(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
cond1(s(x), y) → cond2(gr(s(x), y), s(x), y)
cond2(true, x, y) → cond1(y, y)
cond2(false, x, y) → cond1(p(x), y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
neq(0, 0) → false
neq(0, s(x)) → true
neq(s(x), 0) → true
neq(s(x), s(y)) → neq(x, y)
p(0) → 0
p(s(x)) → x
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
cond1(s(x), y) → cond2(gr(s(x), y), s(x), y)
cond2(true, x, y) → cond1(y, y)
cond2(false, x, y) → cond1(p(x), y)
gr(0', x) → false
gr(s(x), 0') → true
gr(s(x), s(y)) → gr(x, y)
neq(0', 0') → false
neq(0', s(x)) → true
neq(s(x), 0') → true
neq(s(x), s(y)) → neq(x, y)
p(0') → 0'
p(s(x)) → x
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
cond1(s(x), y) → cond2(gr(s(x), y), s(x), y)
cond2(true, x, y) → cond1(y, y)
cond2(false, x, y) → cond1(p(x), y)
gr(0', x) → false
gr(s(x), 0') → true
gr(s(x), s(y)) → gr(x, y)
neq(0', 0') → false
neq(0', s(x)) → true
neq(s(x), 0') → true
neq(s(x), s(y)) → neq(x, y)
p(0') → 0'
p(s(x)) → x
Types:
cond1 :: s:0' → s:0' → cond1:cond2
s :: s:0' → s:0'
cond2 :: true:false → s:0' → s:0' → cond1:cond2
gr :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
p :: s:0' → s:0'
0' :: s:0'
neq :: s:0' → s:0' → true:false
hole_cond1:cond21_0 :: cond1:cond2
hole_s:0'2_0 :: s:0'
hole_true:false3_0 :: true:false
gen_s:0'4_0 :: Nat → s:0'
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
cond1,
gr,
neqThey will be analysed ascendingly in the following order:
gr < cond1
(6) Obligation:
TRS:
Rules:
cond1(
s(
x),
y) →
cond2(
gr(
s(
x),
y),
s(
x),
y)
cond2(
true,
x,
y) →
cond1(
y,
y)
cond2(
false,
x,
y) →
cond1(
p(
x),
y)
gr(
0',
x) →
falsegr(
s(
x),
0') →
truegr(
s(
x),
s(
y)) →
gr(
x,
y)
neq(
0',
0') →
falseneq(
0',
s(
x)) →
trueneq(
s(
x),
0') →
trueneq(
s(
x),
s(
y)) →
neq(
x,
y)
p(
0') →
0'p(
s(
x)) →
xTypes:
cond1 :: s:0' → s:0' → cond1:cond2
s :: s:0' → s:0'
cond2 :: true:false → s:0' → s:0' → cond1:cond2
gr :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
p :: s:0' → s:0'
0' :: s:0'
neq :: s:0' → s:0' → true:false
hole_cond1:cond21_0 :: cond1:cond2
hole_s:0'2_0 :: s:0'
hole_true:false3_0 :: true:false
gen_s:0'4_0 :: Nat → s:0'
Generator Equations:
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
The following defined symbols remain to be analysed:
gr, cond1, neq
They will be analysed ascendingly in the following order:
gr < cond1
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
gr(
gen_s:0'4_0(
n6_0),
gen_s:0'4_0(
n6_0)) →
false, rt ∈ Ω(1 + n6
0)
Induction Base:
gr(gen_s:0'4_0(0), gen_s:0'4_0(0)) →RΩ(1)
false
Induction Step:
gr(gen_s:0'4_0(+(n6_0, 1)), gen_s:0'4_0(+(n6_0, 1))) →RΩ(1)
gr(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) →IH
false
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
cond1(
s(
x),
y) →
cond2(
gr(
s(
x),
y),
s(
x),
y)
cond2(
true,
x,
y) →
cond1(
y,
y)
cond2(
false,
x,
y) →
cond1(
p(
x),
y)
gr(
0',
x) →
falsegr(
s(
x),
0') →
truegr(
s(
x),
s(
y)) →
gr(
x,
y)
neq(
0',
0') →
falseneq(
0',
s(
x)) →
trueneq(
s(
x),
0') →
trueneq(
s(
x),
s(
y)) →
neq(
x,
y)
p(
0') →
0'p(
s(
x)) →
xTypes:
cond1 :: s:0' → s:0' → cond1:cond2
s :: s:0' → s:0'
cond2 :: true:false → s:0' → s:0' → cond1:cond2
gr :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
p :: s:0' → s:0'
0' :: s:0'
neq :: s:0' → s:0' → true:false
hole_cond1:cond21_0 :: cond1:cond2
hole_s:0'2_0 :: s:0'
hole_true:false3_0 :: true:false
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
gr(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
Generator Equations:
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
The following defined symbols remain to be analysed:
cond1, neq
(10) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol cond1.
(11) Obligation:
TRS:
Rules:
cond1(
s(
x),
y) →
cond2(
gr(
s(
x),
y),
s(
x),
y)
cond2(
true,
x,
y) →
cond1(
y,
y)
cond2(
false,
x,
y) →
cond1(
p(
x),
y)
gr(
0',
x) →
falsegr(
s(
x),
0') →
truegr(
s(
x),
s(
y)) →
gr(
x,
y)
neq(
0',
0') →
falseneq(
0',
s(
x)) →
trueneq(
s(
x),
0') →
trueneq(
s(
x),
s(
y)) →
neq(
x,
y)
p(
0') →
0'p(
s(
x)) →
xTypes:
cond1 :: s:0' → s:0' → cond1:cond2
s :: s:0' → s:0'
cond2 :: true:false → s:0' → s:0' → cond1:cond2
gr :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
p :: s:0' → s:0'
0' :: s:0'
neq :: s:0' → s:0' → true:false
hole_cond1:cond21_0 :: cond1:cond2
hole_s:0'2_0 :: s:0'
hole_true:false3_0 :: true:false
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
gr(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
Generator Equations:
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
The following defined symbols remain to be analysed:
neq
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
neq(
gen_s:0'4_0(
n11694_0),
gen_s:0'4_0(
n11694_0)) →
false, rt ∈ Ω(1 + n11694
0)
Induction Base:
neq(gen_s:0'4_0(0), gen_s:0'4_0(0)) →RΩ(1)
false
Induction Step:
neq(gen_s:0'4_0(+(n11694_0, 1)), gen_s:0'4_0(+(n11694_0, 1))) →RΩ(1)
neq(gen_s:0'4_0(n11694_0), gen_s:0'4_0(n11694_0)) →IH
false
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
cond1(
s(
x),
y) →
cond2(
gr(
s(
x),
y),
s(
x),
y)
cond2(
true,
x,
y) →
cond1(
y,
y)
cond2(
false,
x,
y) →
cond1(
p(
x),
y)
gr(
0',
x) →
falsegr(
s(
x),
0') →
truegr(
s(
x),
s(
y)) →
gr(
x,
y)
neq(
0',
0') →
falseneq(
0',
s(
x)) →
trueneq(
s(
x),
0') →
trueneq(
s(
x),
s(
y)) →
neq(
x,
y)
p(
0') →
0'p(
s(
x)) →
xTypes:
cond1 :: s:0' → s:0' → cond1:cond2
s :: s:0' → s:0'
cond2 :: true:false → s:0' → s:0' → cond1:cond2
gr :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
p :: s:0' → s:0'
0' :: s:0'
neq :: s:0' → s:0' → true:false
hole_cond1:cond21_0 :: cond1:cond2
hole_s:0'2_0 :: s:0'
hole_true:false3_0 :: true:false
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
gr(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
neq(gen_s:0'4_0(n11694_0), gen_s:0'4_0(n11694_0)) → false, rt ∈ Ω(1 + n116940)
Generator Equations:
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
gr(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
(16) BOUNDS(n^1, INF)
(17) Obligation:
TRS:
Rules:
cond1(
s(
x),
y) →
cond2(
gr(
s(
x),
y),
s(
x),
y)
cond2(
true,
x,
y) →
cond1(
y,
y)
cond2(
false,
x,
y) →
cond1(
p(
x),
y)
gr(
0',
x) →
falsegr(
s(
x),
0') →
truegr(
s(
x),
s(
y)) →
gr(
x,
y)
neq(
0',
0') →
falseneq(
0',
s(
x)) →
trueneq(
s(
x),
0') →
trueneq(
s(
x),
s(
y)) →
neq(
x,
y)
p(
0') →
0'p(
s(
x)) →
xTypes:
cond1 :: s:0' → s:0' → cond1:cond2
s :: s:0' → s:0'
cond2 :: true:false → s:0' → s:0' → cond1:cond2
gr :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
p :: s:0' → s:0'
0' :: s:0'
neq :: s:0' → s:0' → true:false
hole_cond1:cond21_0 :: cond1:cond2
hole_s:0'2_0 :: s:0'
hole_true:false3_0 :: true:false
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
gr(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
neq(gen_s:0'4_0(n11694_0), gen_s:0'4_0(n11694_0)) → false, rt ∈ Ω(1 + n116940)
Generator Equations:
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
gr(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
(19) BOUNDS(n^1, INF)
(20) Obligation:
TRS:
Rules:
cond1(
s(
x),
y) →
cond2(
gr(
s(
x),
y),
s(
x),
y)
cond2(
true,
x,
y) →
cond1(
y,
y)
cond2(
false,
x,
y) →
cond1(
p(
x),
y)
gr(
0',
x) →
falsegr(
s(
x),
0') →
truegr(
s(
x),
s(
y)) →
gr(
x,
y)
neq(
0',
0') →
falseneq(
0',
s(
x)) →
trueneq(
s(
x),
0') →
trueneq(
s(
x),
s(
y)) →
neq(
x,
y)
p(
0') →
0'p(
s(
x)) →
xTypes:
cond1 :: s:0' → s:0' → cond1:cond2
s :: s:0' → s:0'
cond2 :: true:false → s:0' → s:0' → cond1:cond2
gr :: s:0' → s:0' → true:false
true :: true:false
false :: true:false
p :: s:0' → s:0'
0' :: s:0'
neq :: s:0' → s:0' → true:false
hole_cond1:cond21_0 :: cond1:cond2
hole_s:0'2_0 :: s:0'
hole_true:false3_0 :: true:false
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
gr(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
Generator Equations:
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
gr(gen_s:0'4_0(n6_0), gen_s:0'4_0(n6_0)) → false, rt ∈ Ω(1 + n60)
(22) BOUNDS(n^1, INF)